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We use a Liapunov function with a derivative of constant signs to analyze the 
problem of asymptotic stability and of instability of an unperturbed motion, We 

generalize two theorems due to Matrosov Cl] for a system of equations of pertur- 
bed motion, the right-hand sides of which depend indefinitely on time, The re- 
sults obtained are also formulated with respect to a part of the variables. 

1, Let the following system of equations of perturbed motion be given: 

x’ = x (t, x) (X (t, 0) = 0) 

x = (x1, . . ., xn) E Rn, I( x 11 = (x12 + . . . + z,Z)“’ 

where the vector function X (t, x) is defined and continuous on the set 

(I. I) 

I = {(& x1 : t 2 0, II x II < N) (0 < H 5 4 

while the solutions x = x (t; t,, x0) are defined for t z t, provided that the initial va- 

lues x0 = x &I); to, xuf are sufficiently small in the norm and to Z- 0 p Let x, y E R* and 
M c R”. We introduce the following notation : 

(% Y) = 5 “iYi? P(x,Y)=Ilx---I/, P(x, M)=iufIP(x,y):y&M} 
i===l 

Definition 1.1, [ 11, Let M c Rn and the function u (t, x) be defined and 

continuous on the set 
I’ = {(t, X) : t 2 0, I/ X 11 5 N’) (0 < H’ = const < H) 

We shall consider that U (t, x) is definitely nor&zero ( u (t, x) # 0 ) in the set {(t, x) : 
(t, x) E r’, x E Ml, if for any a,, czz (0 < a, < CT* < H’) positive numbers f3i(rx1, 
az) < o1 and Bz(e+, a,) exist such that 
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Definition 1.2, We shall say that the function E (t) , continuous and nonnega- 

tive on [0, =) , belongs to the class F, if it can be represented in the form 8 (t) = cp (t) $- 
$J (t) where the functions cp (t) and ‘11, (4 are continuous and nonnegative ; cp (t) is boun- 

ded on (0, co) and m 

s 
’ 0 (t) dt <co 

0 

III what follows we shall denote by Ti (t, x) and W (t, x) the functions continuous on the 

set I? together with their partial derivatives in x1, . . ., znmt t, and we shall denote by 
V (t, x)an&W’ (t, x) their time derivatives in accordance with the system (1.1). 

Theorem 1.1. We assume that 

5 (t) = max Q(x, X(t, x)) 1 : II XII 5 H’l E F 0.2) 

and that functions V (t, X) and w (t; x) exist with the following properties on the set l?: 
1) the function V (t, x) is positive-definite and admits an infinitesimal upper bound; 

2) there exists a function V, (x) continuous for 11 x Ij s H’ and such that 

V’ (t. x) 52 v, (x) 5 0 

3) the function W (t, x) is bounded and W’ (t, x) is definitely nonzero (w’(t, x)#O) 

in the set E (V, = 0) = ((t, x) : (f, x) E I-‘, v, (x) = 0) 

Then the unperturbed motion x = 0 of the system (1.1) is asymptotically stable uni- 

formly in x0. 

Proof. Under the Conditions (1) and (2) the unperturbed motion x = 0 is stable uni- 

formly in f, [2], i. e. for any E > 0 , 6 (E) > 0 can be found such that from lj x0 // < 6 
follows 11 x (t; t,, x8) Ij < E for any t 1, to and for all t, >= 0. From the properties of the 
asymptotic and the uniform stabilities, the asymptotic stability uniform in x0 follows 
[2], therefore to prove the theorem it is sufficient to verify the property of the asympto- 

tic stability. Since the unperturbed motion is uniformly stable, it suffices to prove that 

for any numbers 9 (0 < 11 < e), to 2 0, xo (II x0 II < @)) we can find T (th 1,, x0) such 
that /I x (1, + 2’; t,, xd II < 6(q). Let us assume the opposite, i.e. that % (0 < qe < sf, 

t, 2 0, X* (1 X* /I< 6 (e)) exist such that 

X (6 = x (t; 1*, x1) E H (a, E) = {x : a = 6(q*) 5 11 x ] 5 8) 

for any t 2 t,. Then 

a) by virtue of Condition (3) y > 0 and @ > II exist such that 

1 w’ (t, X) is p for t ?S 0, x E H (a, Ef l-l s frf 

s (Yf = {x : p fx, {x : v* f4 = 0)) < y} 

hence from I W (t, x)1 < K ((t. x) E I? it follows that the point x ftl cannot constantly 
remain in the set H (u, E) f\ S(Y) during the interval of time equal to 2K / p, and 

b) v = max {V* (x) : x E H (a, E) \ S (y / 2)) < 0 

co~equen~y the sum of the time intervals during which the point x (t) remains in the 
set H (a, 4 \ S (y / 2) is less than v (t*, x*) i ( - v). 

By virtue of (a) and (b) there exists a sequence of numbers 
th-’ < tk” < . . . such that 

0 5 t,’ < tIr’ < . , . < 
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: tt; - t;, < Do (1.3) 
k=1 

P (x (t,‘), 11 : P* (x) = O$) = y/2, p (x Q,“), {x : v, (x) = 0)) = -&, (1.4) 

Moreover, making me of (1.3) we find that from (1.2) follows 

IOx(t,“)I1P--lIX(tk’)lp15 T) 
tk’ 

+ II x @I ils ] ia 55 

tk” 

2 ” 
a I (KQ), x (t,x@))t I cft -0, k-m 

f ’ k 

(1.5) 

On the other hand, using (1.4) we obtain 

llIx(~~~)lf~-iiX(~k’)I$I~22arlz =er>O (k = 172, ‘. .I 

which contradicts the inequality (I. 5), thus proving the theorem. 
Note 1.1. The Theorem 1.1 is a generalization of the theorem stated in fl], 

where the condition (1.2) is replaced by the assumption that the function j/ X ft, x) 1 is 

bounded on the set I”. 

Example. Suppose we have the following system of equations of perturbed motion: 
cm 

s’=--(~+0(t))z, ?/‘=s---y/2, 
s ++(t)dt<m (1.6) 
0 

where the function $ (t) is continuous and nonnegative on LO, ~a]. 

Let us consider the functions V (z, y) = z2 f y* and W (Y) = y2. By virtue of the sys- 
tem (1.6). their derivatives are 

Moreover, the set E (V, = 0) = {(t, 5, y) : t 2 0,x = y} and Y (2~ - y) # 0 is defined 
on this set. 

Applying Theorem 2.1,we conclude that the solution z = .v = u of the system (1.6) 

is asymptotically stable uniformly in (z,,, y,,). 
Theorem 1.2. Jet the condition (1.2) hold and let the functions V (t, x) and 

W (t, x) exist and have the following properties on the set I” : 
3) the function V (t, x) admits an inf~~te~mal upper bound and for any value 

t, 2 0 in an arbitrarily small neighborhood of x = 0 a point x,, can be found such that 
P (to, x0) > 0; 

2) there exists a function Y, (x) continuous for H x /I 5 H’ and such that t” (t, 
x) 2 v* (x) gg 0; 

3) the function w (f, x) is bounded and W’ (t, x) is definitely nonzero (IV (t, x)+ 6) 

in the set E (V, = 0). Then the unperturbed motion x = 0 of system (1.1) is unstable. 
Proof. We assume that the solution x = 0 is stable, i.e. for any e > 0, t, 2 0 

such 6 (e, rO} > 0 can be found that from i xg 11 < S follows jj x (t; t,, %) II 4 a for any 
t 2 t,. Let us fix the values of t, 5 0 and e, > 0. By virtue of Condition (1) there esists 

x, (If x*11< S (a, t,) such that V (t*, x,) > 0. 
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Let us consider the motion x (t) = K (t; t,, x,).The function V (t, x) admits an infi- 

nitesimal upper bound, therefore a > 0 exists such that V (t, x) < V(t, x*) for all 

x ( (( x 11 < cc) and t > 0. By virtue of Condition (2) Y (t, x (1)) 2 Y (t*, x (t*)) = 

Y (f*, x,), consequently x (t) E W (cc. e) for any t >= t *. But this leads to contradiction 

just as in the proof of Theorem 1.1, This proves Theorem 1.2, 

2, The results obtained in Sect. 1 can also be formulated for the stability with res- 

pect to a part of the variables assuming them, for the sake of definiteness, to be x1, . . ., 
xrn (m > 0, n = m f P, P 2 0). We introduce the notation [3] 

!!i = =it Y&f, x) = Xi@, x) (i = 1, . . *, m) 

zj = z*+p Zj(b, x) = X,+j(t, x) (j = 1, . * *, p) 

Y = fY1,~ . * 1 Y,), 2 = h . . - t zp) 

IIY Ii = (5 YiZ )‘“* 
i=I 

lp II = (5 q)“* 
i=l 

J% 0; to) = {z : 2 = z 0; to, xi,), II x,, II 5 H’} (t 1 t, )= 0, 0 < H' < H) 

ry'=WWZO, IIYII< H’,zE U U E,(cto)} 
t&=0 wo 

Theorem 2.1. Assume that for any t, 3 0 the function 

f (t; r*> = aup {If y, y (4 x)) I : II y II 5 H’, z E J-G @; &Jl E F (2.1) 

and also that functions I’ (t, x) and u7 (t, x) exist which have the following properties 
on the set I’$; 

1) the function V (t, x) is positive-definite and admits an infinitesimal upper 
bound in y ; 

2) there exists a function V, (y),continuous for 11 y 115 H’ and such that v’ (t, 
x) d v* (Y) 5 0; 

3) the function W (t, x) is bounded and FV’(t, x) is definitely nonzero (ty’(t, x)+ 0) 
in the set 

E (V, = 0) = {(t, x) : It? x) f ry’, V*(y) = O} 

Then the unperturbed motion x := 0 of the system (1.1) is asymptotically y-stable uni- 

formly in x0 [PI. 

Note 2.1. Theorem 2.1 is a generali~tion of the Peiffer (“) theorem in which 
the condition (2.1) is replaced by the assumption that the function 11 Y (t, Yt Z) ii is boun- 
ded on the set 

for any t, 2 0. 
E (to) = {(t, x) : t h to, x = x(t; to, ~a), II xo II d H’} 

Theorem 2.2, Assume that for any to 2 0 the condition (2.1) holds and also that 

functions 1’ (t, x) and W (t, x) exist with the following properties on the set TV’: 
1) the function Y (t, x) admits an infinitesimal upper bound in y and for any 

to > 0 a point x,, can be found in an arbitrarily small neighborhood of x = 0 such that 
v (t”, x0) > 0: 

2) there exists a function V, (y) continuous for Ij y If S H’and such that 
x) > v, (y) 2 0; 

V’ (t, 
- 

*) Pe if f er , K . Ia methode directe de Liapounoff !$iapunov] appliqucie k l’btude de 
la stabilite partielle.(Dissertation). Universite Catholique de Louvain, 1968. 
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3) the function w (t, x) is bounded and W’ (t, x) is definitely nonxero (~P{~,x)#o) 

in the set E (V, = 0). 

Then the unperturbed motion x = 0 of the system (1.1) is y-unstable. The proofs of 
Theorems 2.1 and 2.2 represent modifications of the corresponding proofs given insect, 1. 

Note 2. 2. Analyzing the proofs of these theorems we see that they remain valid 
if the class of function F (see the definition 1.2) is extended in the following manner : 
a continuous function 5 (t) nonnegative on (0, m] belongs to the class F if for any in- 
finite system of mutually nonintersecting intervals ((tk, tR)}& with the measure 

(t; - tl’) + (t[ - ta’) + . . . < 00 the condition 

t &j’ 

litn 
a 

5 (f) db = 0 

holds. 
*-=O th-* 

8. Applioctlo~r to mrohralorl lyltoma, Let the equations of an non- 
stationary mechanical system acted upon by the potential, gyroscopic and dissipative 

forces with full dissipation, be given by 

2’ = T(Y, s-f = 3’2 (A(q) 9-t q’> 2 l/g pi_ II $1 2, p = eonst > 0 

R = R & q, q’l = l/~(R(~, s)n’,q’) 2 l&B IJ q’ I/ 2, B = const > 0 

q = (qr, . . . , 4 E Rn, q’ = (sl’, . . . , qn*) E Rn 

where the matrices A (q) = [aif and B (t, q) I (bij(t, q)] are symmetric, while the 
matrix G (t, q) =i [gij(t, q)] is skew symmetric (4 j =,I, . . ., n). The gyroscopic coef- 

ficients gtf and the dissipation function coefficients bzj are holomorphic functions of q 
with the coefficients continuous on [o, CC] . The coefficients ail and the force function 

U (q) are assumed holomorphic and 

V(q)= g U,(q) (mZ2). UP)=0 
?z=m 

where U,(q) is a horn~e~o~ function of k th degree. 

Theorem 3.1. We denote by I.(& q) the largest absolute eigenvalue of the 

symmetric matrix ‘/,[(G - B)A -l - A-‘(G -I- WI. We assume that the function 

E (t) = max {I R (t, q) I : II q I/ 5 H’} E F, 0 < H = con& (3.2) 

and that a function 5 (L) 6 Cl[O, 00) exists such that 

Then 

H' 
I 

(3.3) 
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a) if the force function U (q) is negative-definite and the sum 

S= $ kU,(qf 
k=m 

is sign-definite, then the unperturbed motion q = q’ = 0 of the system (3.1) is asymp- 

totically stable uniformly in {qo, q,‘}; 
b) if the function U (q) can assume a positive value in an arbitrarily small neigh- 

borhood of the point q = 0 and the sum 5’ is sign-definite, then the -unperturbed motion 

q =q * = 0 of the system (3.1) is unstable. 

Proof. Passing from the lagrangian to the Hamiltonian variables, we obtain the 
equation of motion (3. ‘1) in the form 

P = J4 (9) q-9 H(F,p)=T--U=(P,A-l(q)p)-u(q) 

Condition (3.2) implies that condition (1.2) holds for the system (3.4). 
Let us now consider the functions 

By virtue of the system (3.4), their derivatives are 

V’(f, 4, cl’) = - 2R $5 - B II q’ p 

W’ tt, 9, $1 = -& [ 2T + CGSi q’t + (grad UT 9) -!- 

On the set E (p (1 q’ 112 = 0) we have 

c(t)W’(t,q,q’)== i kU,(q) 
k=m 

Using the property of sign-definiteness of this function and the condition (3.3) we con- 

clude, that for any % a, (0 < a1 < a2 < H') , p(a,, a2) 2 0 exists such that 
CQ 
l 

s 
min { I W'(f, 9. s'jl :GS II n112 + II a'112S % ljs’!l~ PI a = w 

0 

From the point (a) of the proofofTheorem 1.1 we see that in Theorems 1.1 and 1.2, this 
property can be substituted for the definiteness of w’ # 0 in the set E (#J 11 q’ 112 = 0) 

(see Cl]), therefore Theorem 3.1. follows from the results of Sect. 1. 

In conclusion, the author thanks V. V. Rumiantsev. who supervised this paper. 
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We consider a motion of a viscous incompressible liquid in a toroidal cavity with- 
in a top spinning with an arbitrary angular velocity and acceleration. The results 
obtained can be used to determine the position of the toroidal tube filled with a 
viscous liquid relative to the top axes of inertia, which will minimize the time 
necessary to stabilize the motion of the top. 

1, Statement of the problem. It was shown in D] for the motion of a solid 
with cavities completely filled with a viscous liquid, that for the first approximation to 
the value of the Reynolds number R = l2 i TV < 1 and for large values of time t > la/v, 
the contribution of the relative motion of the liquid to the moment of impulse of the 
solid-liquid system does not depend on the initial motion of the liquid and can be writ- 

ten in the form 
L =-- ; i pijs @) e(j), pij = - 5 dj) [& c’i’l dv (1.1) 

i, j=l v 

where the integration is performed over the volume of the cavity. e is the angular ac- 

celeration of the solid and c(*) is the solution of the system (see Cl]) 

AC (i) = \,&- [&), r], div gci) ,_O, c(i) Is = 0 (1.2) 

When time is large, the quantities E(i) and <‘$I . determine the velocity u of the liquid 

relative to the solid, and its generalized pressure p 

is1 i=l, 

In [l] we find the values of P. zj computed for a sphere, an ellipsoid and a cylinder. 
Below we consider the case of a toroidal cavity, representing the simplest example of a 

doubly connected region. 

2. Investigation of equations of motion of a llqufd in a torus. 
Let the cavity have the form of a torus with the median line radius denoted by R and 
the tube radius by r. We introduce the intrinsic coordinate system of the torus with its 


